题目
[例题1]装置如图7.23所示,均质圆柱体质量为m1,半径为R,重锤质量为m2最初-|||-静止,后将重锤释放下落并带动柱体旋转,求重锤下落h高-|||-度时的速率v.不计阻力,不计绳的质量及伸长.-|||-R-|||-m1-|||-7-|||-可-|||-h-|||-m2

题目解答
答案

解析
步骤 1:质点动能定理
重锤m2在下落过程中,重力做正功m2gh,绳的拉力F1做负功F1h,质点动能由零增至 $\dfrac {1}{2}{m}_{2}{v}^{2}$ 。根据动能定理,有:
${m}_{2}gh-{F}_{1}h=\dfrac {1}{2}{m}_{2}{v}^{2}$
步骤 2:刚体定轴转动动能定理
圆柱体仅受力矩F1R,做正功F1Rθ,θ为m2下落h时圆柱体的角位移。圆柱体转动惯量为 $\dfrac {1}{2}{m}_{1}{R}^{2}$ ,转动动能从零增至 $\dfrac {1}{2}{{I}_{\omega }}^{2}=\dfrac {1}{4}{m}_{1}{R}^{2}{\omega }^{2}$ 。根据刚体定轴转动的动能定理,有:
${F}_{1}R\theta =\dfrac {1}{4}{m}_{1}{R}^{2}{\omega }^{2}$
步骤 3:绳不可伸长条件
绳不可伸长,有 $R\theta =h$ ,且 $v={R}_{\omega }$ 。代入上式得:
${F}_{1}h=\dfrac {1}{4}{m}_{1}{v}^{2}$
步骤 4:求解重锤速率
解出F1并代入动能定理等式 ${m}_{2}gh-{F}_{1}h=\dfrac {1}{2}{m}_{2}{v}^{2}$ ,得:
$v=2\sqrt {\dfrac {{m}_{2}gh}{{m}_{1}+2{m}_{2}}}$
重锤m2在下落过程中,重力做正功m2gh,绳的拉力F1做负功F1h,质点动能由零增至 $\dfrac {1}{2}{m}_{2}{v}^{2}$ 。根据动能定理,有:
${m}_{2}gh-{F}_{1}h=\dfrac {1}{2}{m}_{2}{v}^{2}$
步骤 2:刚体定轴转动动能定理
圆柱体仅受力矩F1R,做正功F1Rθ,θ为m2下落h时圆柱体的角位移。圆柱体转动惯量为 $\dfrac {1}{2}{m}_{1}{R}^{2}$ ,转动动能从零增至 $\dfrac {1}{2}{{I}_{\omega }}^{2}=\dfrac {1}{4}{m}_{1}{R}^{2}{\omega }^{2}$ 。根据刚体定轴转动的动能定理,有:
${F}_{1}R\theta =\dfrac {1}{4}{m}_{1}{R}^{2}{\omega }^{2}$
步骤 3:绳不可伸长条件
绳不可伸长,有 $R\theta =h$ ,且 $v={R}_{\omega }$ 。代入上式得:
${F}_{1}h=\dfrac {1}{4}{m}_{1}{v}^{2}$
步骤 4:求解重锤速率
解出F1并代入动能定理等式 ${m}_{2}gh-{F}_{1}h=\dfrac {1}{2}{m}_{2}{v}^{2}$ ,得:
$v=2\sqrt {\dfrac {{m}_{2}gh}{{m}_{1}+2{m}_{2}}}$