题目
计算:(1)(-0.02)times (-20)times (-5)times 4.5;(2)(-6.5)times (-2)div (-dfrac(1)(3))div (-5);(3)6+(-dfrac(1)(5))-2-(-1.5);
计算:
(1)$(-0.02)\times (-20)\times (-5)\times 4.5$;
(2)$(-6.5)\times (-2)\div \left(-\dfrac{1}{3}\right)\div (-5)$;
(3)$6+\left(-\dfrac{1}{5}\right)-2-(-1.5)$;
题目解答
答案
(1)$-9$
(2)$\dfrac{39}{5}$
(3)$5.3$
解析
考查要点:本题主要考查有理数的四则混合运算,包括符号处理、运算顺序以及分数与小数的转换。
解题思路:
- 符号优先:根据负号个数确定最终结果的符号(奇负偶正)。
- 简化计算:通过结合律或交换律分组计算,减少复杂度。
- 分步处理:乘除运算按顺序进行,加减运算转化为加法后合并同类项。
第(1)题
关键点:三个负号相乘结果为负,绝对值相乘后取负。
计算绝对值乘积
$0.02 \times 20 = 0.4 \\ 0.4 \times 5 = 2 \\ 2 \times 4.5 = 9$
确定符号
三个负号相乘,结果为负,故最终结果为 $-9$。
第(2)题
关键点:乘除运算从左到右进行,注意符号变化。
分步计算
- 前两数相乘:
$(-6.5) \times (-2) = 13$ - 除以 $-\dfrac{1}{3}$:
$13 \div \left(-\dfrac{1}{3}\right) = 13 \times (-3) = -39$ - 除以 $-5$:
$-39 \div (-5) = \dfrac{39}{5}$
第(3)题
关键点:将减法转化为加法,统一为分数或小数计算。
转化为加法
$6 + \left(-\dfrac{1}{5}\right) - 2 - (-1.5) = 6 - \dfrac{1}{5} - 2 + 1.5$
分步计算
- 计算整数部分:
$6 - 2 = 4$ - 处理分数与小数:
$-\dfrac{1}{5} = -0.2 \\ 4 - 0.2 = 3.8 \\ 3.8 + 1.5 = 5.3$