logonew chat icon top
  • icon-chaticon-chat-active搜题/提问
    new chat icon
    新建会话
  • icon-calculatoricon-calculator-active计算器
  • icon-subjecticon-subject-active学科题目
  • icon-pluginicon-plugin-active浏览器插件
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
recent chat icon
历史记录
首页
/
统计
题目

327.鲁宾逊归结原理中,设 C1 与 C2 是子句集 S 中的两个子句,C12是它们的归结式,若把 C12 加入 S 中,得到新子句集 S2,则 S 与 S2是等价的。A、正确B、错误

327.鲁宾逊归结原理中,设 C1 与 C2 是子句集 S 中的两个子句,C12是它们的归结式,若把 C12 加入 S 中,得到新子句集 S2,则 S 与 S2是等价的。A、正确B、错误

题目解答

答案

正确答案:B

解析

考查要点:本题主要考查对鲁宾逊归结原理中归结式与子句集等价性的理解,关键在于明确归结式加入后是否保持原子句集的逻辑等价性。

核心思路:

  • 归结原理的基本性质:归结式是原子句的逻辑推论,但加入归结式后,新子句集可能引入新的约束,导致原子句集的可满足性被改变。
  • 等价性判断:若原子句集可满足,加入归结式可能使其变为不可满足,因此两者不等价。

破题关键:

  • 逻辑等价的定义:两个子句集等价当且仅当它们具有相同的可满足性。
  • 反例思考:通过构造原子句集可满足但加入归结式后不可满足的例子,直接推翻命题。

鲁宾逊归结原理的核心是通过归结式推导出原子句的逻辑结论。假设原子句集 $S$ 中的两个子句 $C_1$ 和 $C_2$ 归结出 $C_{12}$,将 $C_{12}$ 加入 $S$ 得到 $S_2$。此时需判断 $S$ 与 $S_2$ 是否等价。

关键分析步骤:

  1. 归结式的性质:$C_{12}$ 是 $C_1$ 和 $C_2$ 的逻辑推论,即若 $S$ 不可满足,则 $S_2$ 也不可满足。
  2. 等价性破坏的可能性:若 $S$ 本身可满足,但 $C_{12}$ 在 $S$ 的模型中不成立,则加入 $C_{12}$ 后,$S_2$ 可能变为不可满足。
  3. 反例验证:
    • 设 $S = \{ P \lor Q, \neg P \lor R \}$,其可满足(例如 $P=1, Q=0, R=0$)。
    • 归结 $C_1 = P \lor Q$ 和 $C_2 = \neg P \lor R$ 得 $C_{12} = Q \lor R$。
    • $S_2 = S \cup \{ Q \lor R \}$ 仍可满足(同上赋值)。
    • 但若原 $S$ 中存在其他约束,例如 $S = \{ P, \neg P \}$,则 $S$ 本身不可满足,加入任何归结式仍不可满足。
    • 反例需满足:原 $S$ 可满足,但 $S_2$ 不可满足。例如:
      • $S = \{ P \lor Q, \neg P \lor \neg Q \}$,其可满足(如 $P=1, Q=0$)。
      • 归结得 $C_{12} = \text{空子句}$(不可满足),此时 $S_2$ 不可满足,与 $S$ 不等价。

结论:加入归结式可能改变子句集的可满足性,因此原命题错误。

相关问题

  • 假定用于分析的数据包含属性age.数据元组[1]中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。第二个箱子值为:A. 18.3B. 22。6C. 26。8D. 27。9

  • 48皮尔逊相关系数的取值范围为0到正无穷。() A. 错误B. 正确

  • 以下几种数据挖掘功能中,〔〕被广泛的用于购物篮分析.A. 关联分析B. 分类和预测C. 聚类分析D. 演变分析

  • 下列说法不正确的是() A. 协方差数值上等于各个数据与样本方差之差的平方和B. 协方差和方差的计算完全一致C. 协方差描述了两个变量之间的相关程度D. 方差描述了样本数据的波动程度

  • 聚类分析的常见应用领域不包括( )数据分析图像处理客户分割发现关联购买行为

  • 决策树算法常用的划分准则包括: A. 信息增益B. 基尼指数C. 误差平方和D. 均方差

  • 5.聚类分析可以看作是一种非监督的分类。()

  • 区群谬误是用个体调查(分析)单位做资料收集与分析,却用集群乃至总体调查(分析)单位做结论。()A. 正确B. 错误

  • 下列哪项属于常见的池化方式。() A. 反向传播B. 方差池化C. 协方差池化D. 最大池化

  • 下列说法正确的是() A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差衡量了多个变量的分布C. 协方差和方差的计算方式完全一致D. 方差描述了样本数据的波动程度

  • 下列哪项属于常见的池化方式。() A. 反向传播B. 最大池化C. 方差池化D. 协方差池化

  • 下列哪项属于常见的池化方式。() A. 协方差池化B. 方差池化C. 反向传播D. 最大池化

  • 关于样本中某一变量的综合描述叫( )A. 统计值B. 平均值C. 估计值D. 参数值

  • 下列关于回归分析的描述不正确的是() A. 回归分析模型可分为线性回归模型和非线性回归模型B. 回归分析研究不同变量之间存在的关系()C. 刻画不同变量之间关系的模型统称为线性回归模型D. 回归分析研究单个变量的变化情况

  • 从总体中抽取的、对总体有一定代表性的一部分个体称为()A. 总体B. 部分C. 样本D. 取样

  • 1. 名词解释 假设检验 (请在答题纸上手写并拍照上传)

  • 下列关于回归分析的描述不正确的是() A. 回归分析研究单个变量的变化情况B. 刻画不同变量之间关系的模型统称为线性回归模型C. 回归分析研究不同变量之间存在的关系D. 回归分析模型可分为线性回归模型和非线性回归模型

  • 下列说法正确的是() A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差和方差的计算方式完全一致C. 协方差衡量了多个变量的分布D. 方差描述了样本数据的波动程度

  • 皮尔逊相关系数的取值范围为0到正无穷。() A. 正确B. 错误

  • 可以从最小化每个类簇的方差这一视角来解释K均值聚类的结果,下面对这一视角描述正确的 A. 每个样本数据分别归属于与其距离最远的聚类质心所在聚类集合B. 每个簇类的质心累加起来最小C. 最终聚类结果中每个聚类集合中所包含数据呈现出来差异性最大D. 每个簇类的方差累加起来最小

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市天河区黄村大观公园路10号3N2
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号