题目
两样本均数比较的t检验,p=0.001, 当a<0.05,( )A.认为两样本所代表的总体均数不相同 B.认为两样本总体均数相同C.认为两样本总体均数差别有意义D.认为两样本总体均数差别不大E.认为两样本总体均数差别越大
两样本均数比较的t检验,p=0.001, 当a<0.05,( )
A.认为两样本所代表的总体均数不相同
B.认为两样本总体均数相同
C.认为两样本总体均数差别有意义
D.认为两样本总体均数差别不大
E.认为两样本总体均数差别越大
题目解答
答案
在统计学中,两样本均数比较的t检验是用来检验两个独立样本的均数是否存在显著差异的方法。当进行这样的检验时,会得到一个p值,这个p值用于判断观察到的差异是否具有统计学意义。
题目中的关键信息:
两样本均数比较的t检验,p=0.001
当α<0.05(α是显著性水平,通常设定为0.05,表示有95%的置信度)
逐一分析选项:
A. 认为两样本所代表的总体均数不相同
这个选项虽然表述了总体均数可能不同,但并未直接说明这种差异是否具有统计学意义。排除。
B. 认为两样本总体均数相同
这与p=0.001(远小于α=0.05)的结果相矛盾,因为极小的p值表明两样本均数存在显著差异。排除。
C. 认为两样本总体均数差别有意义
当p值小于α时(即p<0.05),我们可以拒绝原假设(即两样本总体均数无显著差异),并认为观察到的差异是具有统计学意义的。这与题目中的p=0.001和α<0.05完全吻合。
D. 认为两样本总体均数差别不大
这与p=0.001的结果相矛盾,因为极小的p值表明两样本均数存在显著差异。排除。
E. 认为两样本总体均数差别越大
p值并不直接反映两样本均数的实际差别大小,而是反映这种差别是否具有统计学意义。因此,这个选项的表述是不准确的。排除。
答案是C。
解析
步骤 1:理解t检验的含义
t检验是一种用于比较两个独立样本均数是否具有显著差异的统计方法。当进行t检验时,会得到一个p值,这个p值用于判断观察到的差异是否具有统计学意义。
步骤 2:理解p值和显著性水平α的关系
p值是假设检验中用于判断原假设是否成立的概率值。当p值小于显著性水平α(通常设定为0.05)时,我们拒绝原假设,认为两样本均数的差异具有统计学意义。反之,如果p值大于α,我们接受原假设,认为两样本均数的差异不具有统计学意义。
步骤 3:分析题目中的p值和α
题目中给出的p值为0.001,显著性水平α小于0.05。由于p值远小于α,我们可以拒绝原假设,认为两样本均数的差异具有统计学意义。
步骤 4:分析选项
A. 认为两样本所代表的总体均数不相同:虽然表述了总体均数可能不同,但并未直接说明这种差异是否具有统计学意义。
B. 认为两样本总体均数相同:这与p=0.001(远小于α=0.05)的结果相矛盾,因为极小的p值表明两样本均数存在显著差异。
C. 认为两样本总体均数差别有意义:当p值小于α时(即p<0.05),我们可以拒绝原假设(即两样本总体均数无显著差异),并认为观察到的差异是具有统计学意义的。这与题目中的p=0.001和α<0.05完全吻合。
D. 认为两样本总体均数差别不大:这与p=0.001的结果相矛盾,因为极小的p值表明两样本均数存在显著差异。
E. 认为两样本总体均数差别越大:p值并不直接反映两样本均数的实际差别大小,而是反映这种差别是否具有统计学意义。因此,这个选项的表述是不准确的。
t检验是一种用于比较两个独立样本均数是否具有显著差异的统计方法。当进行t检验时,会得到一个p值,这个p值用于判断观察到的差异是否具有统计学意义。
步骤 2:理解p值和显著性水平α的关系
p值是假设检验中用于判断原假设是否成立的概率值。当p值小于显著性水平α(通常设定为0.05)时,我们拒绝原假设,认为两样本均数的差异具有统计学意义。反之,如果p值大于α,我们接受原假设,认为两样本均数的差异不具有统计学意义。
步骤 3:分析题目中的p值和α
题目中给出的p值为0.001,显著性水平α小于0.05。由于p值远小于α,我们可以拒绝原假设,认为两样本均数的差异具有统计学意义。
步骤 4:分析选项
A. 认为两样本所代表的总体均数不相同:虽然表述了总体均数可能不同,但并未直接说明这种差异是否具有统计学意义。
B. 认为两样本总体均数相同:这与p=0.001(远小于α=0.05)的结果相矛盾,因为极小的p值表明两样本均数存在显著差异。
C. 认为两样本总体均数差别有意义:当p值小于α时(即p<0.05),我们可以拒绝原假设(即两样本总体均数无显著差异),并认为观察到的差异是具有统计学意义的。这与题目中的p=0.001和α<0.05完全吻合。
D. 认为两样本总体均数差别不大:这与p=0.001的结果相矛盾,因为极小的p值表明两样本均数存在显著差异。
E. 认为两样本总体均数差别越大:p值并不直接反映两样本均数的实际差别大小,而是反映这种差别是否具有统计学意义。因此,这个选项的表述是不准确的。